Grade K-PS2

Motion and Stability: Forces and Interactions

Performance Expectation K-PS2-1

Students who demonstrate understanding can:

Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.

Clarification Statement: Examples of pushes or pulls could include a string attached to an object being pulled, a person pushing an object, a person stopping a rolling ball, or two objects colliding and pushing on each other. Content includes contact forces with different relative strengths or different directions, but not both at the same time.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems	Force and Motion Pushes and pulls can have different strengths and directions. (LE.PS2A.a)	Cause and Effect Simple tests can be designed to gather evidence to support or refute student ideas
Planning and carrying out investigations		about causes.
Analyzing and interpreting data	Pushing or pulling on an object can change the speed or direction of its motion and can start or stop it. (LE.PS2A.b)	
Using mathematics and computational thinking		
Constructing explanations and designing solutions	Types of Interactions When objects touch or collide, they push on one another and can change motion. (LE.PS2B.a)	
Obtaining, evaluating, and communicating information	Relationship Between Energy and Forces A bigger push or pull makes things speed up or slow down more quickly. (LE.PS3C.a)	

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Materials and Motion Investigations Guide:

Investigation 4, Parts 1-4

Materials and Motion Science Resources Book:

"Pushes and Pulls" "Collisions"

Grade K-PS2

Motion and Stability: Forces and Interactions

Performance Expectation K-PS2-2

Students who demonstrate understanding can: Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.

Clarification Statement: Examples of problems requiring a solution could include having a marble or other object move a certain distance, follow a particular path, or knock down other objects. Examples of solutions could include tools such as a ramp to increase the speed of the object, a structure that would cause an object such as a marble or ball to turn or using a rope or string to pull an object. Content does not include friction as a mechanism for change in speed.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems	Force and Motion Pushes and pulls can have different strengths and directions. (LE.PS2A.a)	Cause and Effect Simple tests can be designed to gather evidence to support or refute student ideas
Planning and carrying out Investigations	Pushing or pulling on an object can change the speed or direction of its motion and can	about causes.
Analyzing and interpreting data	start or stop it. (LE.PS2A.b)	
Using mathematics and computational thinking	Types of Interactions When objects touch or collide, they push on one another and can change motion.	
Constructing explanations and designing solutions	(LE.PS2B.a)	
Obtaining, evaluating, and communicating information	Relationship Between Energy and Forces A bigger push or pull makes things speed up or slow down more quickly. (LE.PS3C.a)	

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Materials and Motion Investigations Guide:

Investigation 4, Parts 1-4

Materials and Motion Science Resources Book:

"Pushes and Pulls" "Collisions"

Grade K-PS3

Energy

Performance Expectation K-PS3-1

Students who demonstrate understanding can: Make observations to determine the effect of sunlight on Earth's surface.

Clarification Statement: Sunlight heats Earth's natural surfaces including sand, soil, rocks, or water and the unnatural surfaces including man-made objects like plastics, asphalt, or concrete. Examples of observations could be relative changes in temperature of surfaces exposed to sunlight.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Planning and carrying out investigations Analyzing and interpreting data	Conservation of Energy and Energy Transfer Sunlight warms Earth's surface. (LE.PS3B.a)	Cause and Effect Events have causes that generate observable patterns.
Constructing explanations and designing solutions		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Trees and Weather Investigations Guide:

Investigation 3, Parts 1-3

Trees and Weather Science Resources Book:

"Up in the Sky" "Weather"

Grade K-PS3

Energy

Performance Expectation K-PS3-2

Students who demonstrate understanding can:

Use tools and materials to design and build a structure that will reduce the warming effect of sunlight on an area.

Clarification Statement: Examples of structures could include umbrellas, canopies, or tents that minimize the warming effect of the sun

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Planning and carrying out investigations	Conservation of Energy and Energy Transfer	Cause and Effect Events have causes that generate observable
Analyzing and interpreting data	Sunlight warms Earth's surface. (LE.PS3B.a)	patterns.
Constructing explanations and designing solutions		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Trees and Weather Investigations Guide:

Investigation 3, Parts 1-3

Trees and Weather Science Resources Book:

"Up in the Sky" "Weather"

Grade K-LS-1

From Molecules to Organisms: Structures and Processes

Performance Expectation K-LS-1-1

Students who demonstrate understanding can:

Use observations to describe patterns of what plants and animals (including humans) need to survive.

Clarification Statement: Examples of patterns could include that plants make their own food while animals do not, the different kinds of food needed by different types of animals, the requirement of plants to have light, or that all living things need water.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems	Organization for Matter and Energy Flow in Organisms All animals need food in order to live and	Patterns Patterns in the natural and human designed world can be observed, used to describe
Developing and using model	grow. Animals obtain their food from plants or from other animals. Plants need	phenomena, and used as evidence.
Planning and carrying out Investigation	water and light to live and grow. (LE.LS1C.a)	
Analyzing and interpreting data		
Constructing explanations and designing solutions		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Animals Two by Two Investigations Guide:

Investigation 1, Pts. 1-5 Investigation 2, Pts. 1-3 Investigation 3, Pts. 1-3 Investigation 4, Pts. 1-4

Animals Two by Two Science Resources Book:

"Fish Same and Different" "Fish Live in Many Places" "Birds Outdoors" "Water and Land Snails" "Worms in Soil" "Isopods" "Animals All around Us" "Living and Nonliving"

Grade K-ESS2

Earth's Systems

Performance Expectation K-ESS2-1

Students who demonstrate understanding can:

Use and share observations of local weather conditions to describe patterns over time.

Clarification Statement: Examples of qualitative observations could include descriptions of the weather (such as sunny, cloudy, rainy, or warm); examples of quantitative observations could include numbers of sunny, windy, or rainy days in a month. Examples of patterns could include that it is cooler in the morning than in the afternoon or the number of sunny days versus cloudy days in different months.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
	Weather and Climate	Patterns
Planning and carrying out investigations	Weather is the combination of sunlight, wind, snow or rain, and temperature in a	Patterns in the natural and human designed world can be observed, used to describe
Analyzing and interpreting data	particular region at a particular time. People measure these conditions to	phemonena, and used as evidence
Constructing explanations and designing	describe and record the weather and to	
solutions	notice patterns over time. (LE.ESS2D.a)	
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Trees and Weather Investigations Guide:

Investigation 3, Pts. 1-3 Investigation 4, Pts. 1-9

Trees and Weather Science Resources Book:

"Up in the Sky" "Weather" "My Apple Tree" "Orange Trees" "Maple Trees"

Grade K-ESS2

Earth's Systems

Performance Expectation K-ESS2-2

Students who demonstrate understanding can:

Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs.

Clarification Statement: Examples of plants and animals changing their environment could include a squirrel digging in the ground to hide its food, tree roots breaking concrete, or a dandelion spreading seeds to generate more dandelions.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems	Biogeology	Systems and System Models
Developing and using models	Plants and animals can change their environment. (LE.ESS2E.a)	Systems in the natural and designed world have parts that work together.
Planning and carrying out Investigations	Human Impacts on Earth Systems	
Analyzing and interpreting data	Things that people do to live comfortably can affect the world around them; but they can make choices that reduce their impacts	
Using mathematics and computational thinking	on the land, water, air, and other living things. (LE.ESS3C.a)	
Constructing explanations and designing solutions		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Trees and Weather Investigations Guide:

Investigation 1, Pts. 1-6 Investigation 4, Pts. 1-9

Trees and Weather Science Resources Book:

"Where Do Trees Grow?" "What Do Plants Need?" "My Apple Tree" "Orange Trees" "Maple Trees"

Grade K-ESS3

Earth and Human Activity

Performance Expectation K-ESS3-1

Students who demonstrate understanding can:

Use a model to represent the relationship between the needs of different plants or animals (including humans) and the places they live.

Clarification Statement: Examples of relationships could include that deer eat buds and leaves and therefore usually live in forested areas; grasses need sunlight so they often grow in meadows. Plants, animals, and their surroundings make up a system.

Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts Asking questions and defining problems Systems and System Models **Natural Resources** Living things need water, air, and Systems in the natural and designed world **Developing and using models** resources from the land, and they live in have parts that work together. places that have the things they need. Planning and carrying out investigations Humans use natural resources for everything they do. (LE.ESS3A.a) Analyzing and interpreting data Using mathematics and computational thinking **Constructing explanations and designing** solutions Engaging in argument from evidence Obtaining, evaluating, and communicating information

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Trees and Weather Investigations Guide:

Investigation 1, Pts. 1-6 Investigation 4, Pts. 1-9

Trees and Weather Science Resources Book:

"Where Do Trees Grow?" "What Do Plants Need?" "My Apple Tree" "Orange Trees" "Maple Trees"

Grade K-ESS3

Earth and Human Activity

Performance Expectation K-ESS3-2

Students who demonstrate understanding can:

Ask questions to obtain information about the purpose of weather forecasting to prepare for and respond to severe weather.

Clarification Statement: Emphasis is on local forms of severe weather and safety precautions associated with that severe weather.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems	Natural Hazards Some kinds of severe weather are more likely than others in a given region.	Cause and Effect Events have causes that generate observable patterns.
Developing and using models	Weather scientists forecast severe weather	
Constructing explanations and designing solutions	so that the communities can prepare for and respond to these events. (LE.ESS3B.a)	
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Trees and Weather Investigations Guide:

Investigation 3, Pts. 1-3

Trees and Weather Science Resources Book:

"Up in the Sky" "Weather"

Grade K-ESS3

Earth and Human Activity

Performance Expectation K-ESS3-3

Students who demonstrate understanding can:

Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.

Clarification Statement: Examples of human impact on the land could include cutting trees to produce paper and using resources to produce bottles. Examples of solutions could include reusing paper and recycling cans and bottles.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems	Human Impacts on Earth Systems Things that people do to live comfortably can affect the world around them. But they	Cause and Effect Events have causes that generate observable patterns.
Developing and using models	can make choices that reduce their impacts on the land, water, air, and other living	
Planning and carrying out investigations	things. (LE.ESS3C.a)	
Analyzing and interpreting data		
Using mathematics and computational thinking		
Constructing explanations and designing solutions		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Materials and Motion Investigations Guide:

Investigation 3, Pts. 1-6

Materials and Motion Science Resources Book:

"What Is Fabric Made From?" "How Are Fabrics Used?" 'Land, Air, and Water" "I Am Wood"

Grade 1-PS4

Performance Expectation 1-PS4-1

Students who demonstrate understanding can:

Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate.

Clarification Statement: Examples of vibrating materials that make sound could include tuning forks or plucking a stretched string. Examples of how sound can make matter vibrate could include holding a piece of paper near a speaker making sound or holding an object near a vibrating tuning fork.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems	Wave Properties Sound can make matter vibrate, and vibrating matter can make sound. (LE.PS4A.a)	Cause and Effect Simple tests can be designed to gather evidence to support or refute student ideas about causes.
Developing and using models		
Planning and carrying out investigations.		
Analyzing and interpreting data		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Sound and Light Investigations Guide:

Investigation 1, Parts 1-3 Investigation 2, Parts 1-4

Sound and Light Science Resources Book:

"Vibrations and Sound" "Listen to This" "Animal Ears and Hearing" "Strings in Motion" "More Musical Instruments"

Grade 1-PS4

Waves and Their Applications

Performance Expectation 1-PS4-2

Students who demonstrate understanding can:

Make observations to construct an evidence-based account that objects can be seen only when illuminated.

Clarification Statement: Examples of observations could include those made in a completely dark room, a pinhole box, or a video of a cave explorer with a flashlight. Illumination could be from an external light source or by an object giving off its own light. This can be explored with light tables, 3-way mirrors, overhead projectors or flashlights

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems	Electromagnetic Radiation Objects can be seen if light is available to illuminate them or if they	Cause and Effect Events have causes that generate observable patterns.
Developing and using models	give off their own light. Some objects	
Planning and carrying out investigations	give off their own light. (LE.PS4B.a)	
Analyzing and interpreting data		
Constructing explanations and designing solutions		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Sound and Light Investigations Guide:

Investigation 3, Parts 1-3 Investigation 4, Parts 1-4

Sound and Light Science Resources Book:

"Playing in the Light" "Reflections" "Seeing the Light" "Communicating with Light"

Grade 1-PS4

WAVES AND THEIR APPLICATIONS

Performance Expectation 1-PS4-3

Students who demonstrate understanding can:

Plan and conduct an investigation to determine the effect of placing objects made with different materials in the path of a beam of light.

Clarification Statement: Examples of materials could include those that are transparent (such as clear plastic), translucent (such as wax paper), opaque (such as cardboard), or reflective (such as a mirror).

Asking questions and defining problems Electromagnetic Radiation Cause and Effect Developing and using models Some materials allow light to pass through them, others allow only some light through and others block all the Simple tests can be designed to evidence to support or refute st about causes.	
Developing and using models through them, others allow only some evidence to support or refute st	
	3
Planning and carrying out investigations light and create a dark shadow on any surface beyond them, where the light	
Analyzing and interpreting data cannot reach. Mirrors can be used to	
redirect a light beam. (The idea that	
Constructing explanations and light travels from place to place is	
designing solutions developed through experiences with	
light sources, mirrors, and shadows,	
Obtaining, evaluating, and communicating information but no attempt is made to discuss the speed of light.) (LE.PS4B.b)	

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Sound and Light Investigations Guide:

Investigation 3, Parts 1-3 Investigation 4, Parts 1-4

Sound and Light Science Resources Book:

"Playing in the Light" "Reflections" "Seeing the Light" "Communicating with Light"

3

Grade 1-PS4

Waves and Their Applications

Performance Expectation 1-PS4-4

Students who demonstrate understanding can:

Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance.

Clarification Statement: Examples of devices could include a light source to send signals, paper cup and string "telephones," or a pattern of drumbeats.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems	Information Technologies and	Systems and System Models
	Instrumentation	Systems in the natural and designed world
Developing and using models	People also use a variety of devices to	have parts that work together.
	communicate (send and receive	
Planning and carrying out investigations	information) over long distances.	
	(LE.PS4C.a)	
Analyzing and interpreting data		
	Developing Possible Solutions	
Constructing explanations and	A situation that people want to change or	
designing solutions	create can be approached as a problem to	
	be solved through engineering.	
Obtaining, evaluating, and communicating	(LE.ETS1A.a)	
information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Sound and Light Investigations Guide:

Investigation 2, Parts 1-4 Investigation 4, Parts 1-4

Sound and Light Science Resources Book:

"Animal Ears and Hearing" "Strings in Motion" "More Musical Instruments" "Playing in the Light" "Reflections" "Seeing the Light" "Communicating with Light"

Grade 1-LS1

From Molecules to Organisms: Structures and Processes

Performance Expectation 1-LS1-1

Students who demonstrate understanding can:

Use tools and materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

Clarification Statement: Examples of human problems that can be solved by mimicking plant or animal solutions could include designing clothing or equipment to protect bicyclists by mimicking turtle shells, acorn shells or animal scales; stabilizing structures by mimicking animal tails or roots on plants; keeping out intruders by mimicking thorns on branches or animal quills; and detecting intruders by mimicking eyes or ears.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting data Using mathematics and computational thinking Constructing explanations and	Structure and Function All organisms have external parts. Different animals use their body parts in different ways to see, hear, grasp objects, protect themselves, move from place to place, and seek, find, and take in food, water, and air. Plants also have different parts (roots, stems, leaves, flowers, fruits) that help them survive and grow. (LE.LS1A.a) Information Processing Animals have body parts that capture and	Crosscutting Concepts Structure and Function The shape and stability of structures of natural and designed objects are related to their function(s).
designing solutions Obtaining, evaluating, and communicating information	convey different kinds of information needed for growth and survival. Animals respond to these inputs with behaviors that help them survive. Plants also respond to some external inputs. (LE.LS1D.a) Developing Possible Solutions Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for solutions to a problem. (LE.ETS1B.a) Optimizing the Design Solution Because there is always more than one possible solution to a problem, it is useful to compare and test designs. (LE.ETS1C.a)	

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Plants and Animals Investigations Guide:

Investigation 3, Parts 1-4

Plants and Animals Science Resources Book:

"What Do Animals Need?" "Plants and Animals around the World" "Learning from Nature"

Grade 1-LS1

From Molecules to Organisms: Structures and Processes

Performance Expectation 1-LS1-2

Students who demonstrate understanding can:

Read grade-appropriate texts and use media to determine patterns in behavior of parents and offspring that help offspring survive.

Clarification Statement: Examples of patterns of behaviors could include the signals that offspring make (such as crying, cheeping, and other vocalizations) and the responses of the parents (such as feeding, comforting, and protecting the offspring).

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems	Growth and Development Adult plants and animals can have offspring. In many kinds of animals,	Patterns Patterns in the natural and human designed world can be observed, used to describe
Developing and using models	parents and the offspring themselves	phenomena, and used as evidence.
Planning and carrying out investigations	engage in behaviors that help the offspring to survive. (LE.LS1B.a)	
Analyzing and interpreting data		
Using mathematics and computational thinking		
Constructing explanations and designing solutions		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Plants and Animals Investigations Guide:

Investigation 1, Parts 1-4 Investigation 2, Parts 1-4 Investigation 4, Parts 1-3

Plants and Animals Science Resources Book:

"What Do Plants Need?" "The Story of Wheat" "Variation" "What Do Animals Need?" "Plants and Animals around the World" "Learning from Nature" "Animals and Their Young"

Grade 1-LS3

Heredity: Inheritance and Variation of Traits

Performance Expectation 1-LS3-1

Students who demonstrate understanding can:

Make observations to construct an evidence-based account that young plants and animals are similar, but not exactly like, their parents.

Clarification Statement: Examples of observations could include: leaves from the same kind of plant are similar in shape but can differ in size, or a particular breed of dog looks like its parents but is not exactly the same. Examples of patterns could include features that plants or animals share.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems	Inheritance of Traits Young animals are very much, but not exactly like, their parents. Plants also are	Patterns Patterns in the natural and human designed world can be observed, used to describe
Developing and using models	very much, but not exactly like, their parents. (LE.LS3A.a)	phenomena, and used as evidence.
Planning and carrying out investigations		
Analyzing and interpreting data Using mathematics and computational thinking	Variation of Traits Individuals of the same kind of plant or animal are recognizable as similar but can also vary in many ways. (LE.LS3B.a)	
Constructing explanations and designing solutions		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Plants and Animals Investigations Guide:

Investigation 1, Part 4 Investigation 3, Parts 1-4 Investigation 4, Parts 1-3

Plants and Animals Science Resources Book:

"Variation" "What Do Animals Need?" "Plants and Animals around the World" "Learning from Nature" "Animals and Their Young"

Grade 1-ESS1

Earth's Place in the Universe

Performance Expectation 1-ESS1-1

Students who demonstrate understanding can:

Use observations of the sun, moon, and stars to describe patterns that can be predicted.

Clarification Statement: Examples of patterns could include that the sun and moon appear to rise in one part of the sky, move across the sky, and set; and stars other than our sun are visible at night but not during the day.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems	The Universe and Its Stars Patterns of the motion of the sun, moon, and stars in the sky can be observed,	Patterns Patterns in the natural and human designed world can be observed, used to describe
Planning and carrying out investigations	described, and predicted. (LE.ESS1A.a)	phenomena, and used as evidence.
Analyzing and interpreting data:		
Using mathematics and computational thinking		
Constructing explanations and designing solutions		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Air and Weather Investigations Guide:

Investigation 2, Parts 1-4 Investigation 4, Parts 1-3

Air and Weather Science Resources Book:

"What Is the Weather Today?" "Clouds" "Water in the Air" "Changes in the Sky" "What's the Weather?" "Changes in the Sky" "Seasons" "Getting through the Winter"

Grade 1-ESS1

Earth's Place in the Universe

Performance Expectation 1-ESS1-2

Students who demonstrate understanding can:

Make observations at different times of year to relate the amount of daylight to the time of year.

Clarification Statement: Emphasis is on relative comparisons of the amount of daylight in the winter to the amount in the spring, fall, or summer.

Disciplinary Core Ideas	Crosscutting Concepts
Earth and the Solar System Seasonal patterns of sunrise and sunset can be observed, described, and predicted.	Patterns Patterns in the natural and human designed world can be observed, used to describe
(LE.ESS1B.a)	phenomena, and used as evidence.
	Earth and the Solar System Seasonal patterns of sunrise and sunset can be observed, described, and predicted.

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Air and Weather Investigations Guide:

Investigation 2, Parts 1-4 Investigation 4, Parts 1-3

Air and Weather Science Resources Book:

"What Is the Weather Today?" "Clouds" "Water in the Air" "Changes in the Sky" "What's the Weather?" "Changes in the Sky" "Seasons" "Getting through the Winter"

Grade 2-PS1

Matter and Its Interactions

Performance Expectation 2-PS1-1

Students who demonstrate understanding can:

Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties.

Clarification Statement: Observations could include color, texture, hardness, or flexibility. Patterns could include the similar properties that different materials share.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems	Structures and Properties of Matter Different kinds of matter exist and many of them can be either solid or liquid,	Patterns Patterns in the natural and human designed world can be observed, used to describe
Developing and using models	depending on temperature. Matter can be	phenomena, and used as evidence.
Planning and carrying out investigations	described and classified by its observable properties. (LE.PS1A.c)	
Analyzing and interpreting data		
Using mathematics and computational thinking		
Constructing explanations and designing solutions		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Solids and Liquids Investigations Guide:

Investigation 1, Parts 1-5 Investigation 2, Parts 1-4 Investigation 3, Parts 1-5 Investigation 4, Parts 1-5

Solids and Liquids Science Resources Book:

"Everything Matters" "Solid Objects and Materials" "Towers" "Bridges" "Liquids" "Pouring" "Comparing Solids and Liquids" "Mix It Up!" "Heating and Cooling" "Is Change Reversible?"

Grade 2-PS1

Matter and Its Interactions

Performance Expectation 2-PS1-2

Students who demonstrate understanding can:

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

Clarification Statement: Examples of properties could include, strength, flexibility, hardness, texture, or absorbency

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems Developing and using models	Structures and Properties of Matter Different properties are suited to different purposes. (LE.PS1A.a)	Cause and Effect Simple tests can be designed to gather evidence to support or refute student ideas
Planning and carrying out investigations		about causes.
Analyzing and interpreting data		
Using mathematics and computational thinking		
Constructing explanations and designing solutions		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Solids and Liquids Investigations Guide:

Investigation 4, Parts 1-5

Solids and Liquids Science Resources Book:

"Mix It Up!" "Heating and Cooling" "Is Change Reversible?"

Grade 2-PS1

Matter and Its Interactions

Performance Expectation 2-PS1-3

Students who demonstrate understanding can:

Make observations to construct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object.

Clarification Statement: Examples of pieces could include blocks, building bricks, or other assorted small objects. Provide students with the same number of objects to create a different object.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems	Structure and Properties of Matter Different properties are suited to different	Energy And Matter Objects may break into smaller pieces, be
Developing and using models	purposes. (LE.PS1A.a)	put together into larger pieces, or change
Planning and carrying out investigations	A great variety of objects can be built up from a small set of pieces. (LE.PS1A.b)	shapes.
Analyzing and interpreting data		
Constructing explanations and designing solutions		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Solids and Liquids Investigations Guide:

Investigation 4, Parts 1-5

Solids and Liquids Science Resources Book:

"Mix It Up!" "Heating and Cooling" "Is Change Reversible?"

Grade 2-PS1

Matter and Its Interactions

Performance Expectation 2-PS1-4

Students who demonstrate understanding can:

Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot.

Clarification Statement: Demonstrations of reversible changes could include materials such as water, butter or crayons at different temperatures. Demonstrations of irreversible changes could include cooking an egg, freezing a plant leaf, or heating paper.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Planning and carrying out investigations	Chemical Reactions Heating or cooling a substance may cause changes that can be observed. Sometimes	Cause and Effect Events have causes that generate observable patterns.
Analyzing and interpreting data	these changes are reversible, and	
Using mathematics and computational thinking	sometimes they are not. (LE.PS1B.a)	
Constructing explanations and designing solutions		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Solids and Liquids Investigations Guide:

Investigation 4, Part 4

Solids and Liquids Science Resources Book:

"Mix It Up!" "Heating and Cooling" "Is Change Reversible?"

4

Grade 2-LS2

Ecosystems: Interactions, Energy, and Dynamics

Performance Expectation 2-LS2-1

Students who demonstrate understanding can:

Plan and conduct an investigation to determine if plants need sunlight and water to grow.

Clarification Statement: Emphasis is on testing one variable at a time during investigations.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems Developing and using models	Interdependent Relationships in Ecosystems Plants depend on water and light to grow. (LE.LS2A.a)	Cause and Effect Events have causes that generate observable patterns.
Planning and carrying out investigations		
Analyzing and interpreting data		
Constructing explanations and designing solutions		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Insects and Plants Investigations Guide:

Investigation 2, Parts 1-4

Insects and Plants Science Resources Book: "How Seeds Travel"

Grade 2-LS2

Ecosystems: Interactions, Energy, and Dynamics

Performance Expectation 2-LS2-2

Students who demonstrate understanding can:

Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.

Clarification Statement: Students could use the model to describe: (1) How the structure of the model gives rise to its function. (2) Structure-function relationships in the natural world that allow some animals to disperse seeds or pollinate plants.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems	Interdependent Relationships Plants may depend on animals for pollination or to move their seeds around.	Structure and Function The shape and stability of structures of natural and designed objects are related to
Developing and using models	(LE.LS2A.b)	their function(s).
Planning and carrying out investigations		
Analyzing and interpreting data		
Constructing explanations and designing solutions		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Insects and Plants Investigations Guide:

Investigation 2, Parts 1-4

Insects and Plants Science Resources Book: "How Seeds Travel"

6

Grade 2-LS4

Biological Evolution: Unity and Diversity

Performance Expectation 2-LS4-1

Students who demonstrate understanding can:

Make observations of plants and animals to compare the diversity of life in different habitats.

Clarification Statement: Emphasis is on the diversity of living things in each of a variety of different habitats. Students could explore different habitats in the community (e.g., school, aquariums, and neighborhoods).

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems	Biodiversity and Humans There are many kinds of living things in any area, and they exist in different places on	Patterns Patterns in the natural and human designed world can be observed, used to describe
Developing and using models	land, in water, and in air. (LE.LS4D.a)	phenomena, and used as evidence
Planning and carrying out investigations		
Analyzing and interpreting data		
Using mathematics and computational thinking		
Constructing explanations and designing solutions		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Insects and Plants Investigations Guide:

Investigation 1, Parts 1-3 Investigation 2, Parts 1-4 Investigation 3, Parts 1-4 Investigation 4, Parts 1-4 Investigation 5, Parts 1-4

Insects and Plants Science Resources Book:

"Animals and Plants in Their Habitats" "Flowers and Seeds" "How Seeds Travel" "So Many Kinds, So Many Places" "Insect Shapes and Colors" "Insect Life Cycles" "Life Goes Around"

Grade 2-ESS1

Earth's Place in the Universe

Performance Expectation 2-ESS1-1

Students who demonstrate understanding can:

Use information from several sources to provide evidence that Earth events can occur quickly or slowly.

Clarification Statement: Examples of events and timescales could include volcanic explosions and earthquakes, which happen quickly, and erosion of rocks, which occurs slowly.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and using models Planning and carrying out investigations	The History of Planet Earth Some events happen very quickly; others occur very slowly, over a time period much longer than one can observe. (LE.ESS1C.a)	Stability and Change Things may change slowly or rapidly.
Analyzing and interpreting data		
Constructing explanations and designing solutions Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Pebbles, Sand, and Silt Investigations Guide:

Investigation 1, Parts 1-2 Investigation 2, Parts 3-4 Investigation 4, Part 4

Pebbles, Sand, and Silt Science Resources Book:

"Rocks Move" "Landforms" "Preventing Erosion" "Land and Water on Earth"

Grade 2-ESS2

Earth's Systems

Performance Expectation 2-ESS2-1

Students who demonstrate understanding can:

Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.

Clarification Statement: Examples of solutions could include different designs of dikes and windbreaks to hold back wind and water, and different designs for using shrubs, grass, and trees to hold back the land.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems	Earth Materials and Systems Wind and water can change the shape of the land. (LE.ESS2A.a)	Stability and Change Things may change slowly or rapidly.
Developing and using models		
Planning and carrying out investigations	Optimizing the Design Solution Because there is always more than one possible solution to a problem, it is useful	
Analyzing and interpreting data	to compare and test designs. (LE.ETS1C.a)	
Constructing explanations and designing solutions		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		
Analyzing and interpreting data Constructing explanations and designing solutions Engaging in argument from evidence Obtaining, evaluating, and communicating	possible solution to a problem, it is useful	

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Pebbles, Sand, and Silt Investigations Guide:

Investigation 2, Part 4 Investigation 3, Parts 1-5 Investigation 4, Parts 1-4

Pebbles, Sand, and Silt Science Resources Book:

"Landforms" "Making Things with Rocks" "What Are Natural Resources?" "Where Is Water Found?" "States of Water" "Preventing Erosion" "Land and Water on Earth"

Grade 2-ESS2

Earth's Systems

Performance Expectation 2-ESS2-2

Students who demonstrate understanding can:

Develop a model to represent the shapes and kinds of land and bodies of water in an area.

Clarification Statement: Models do not have to be to scale.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and using models Constructing explanations and designing solutions	Plate Tectonics and Large-Scale Interactions Maps show where things are located. One can map the shapes and kinds of land and water in any area. (LE.ESS2B.a)	Patterns Patterns in the natural and human designed world can be observed, used to describe phenomena, and used as evidence.
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Pebbles, Sand, and Silt Investigations Guide:

Investigation 4, Part 4

Pebbles, Sand, and Silt Science Resources Book:

"Preventing Erosion" "Land and Water on Earth"

Grade 2-ESS2

Earth's Systems

Performance Expectation 2-ESS2-3

Students who demonstrate understanding can:

Obtain and communicate information to identify where water is found on Earth and that it can be solid or liquid.

Clarification Statement: Students use reliable sources to identify the patterns of where water is found and its natural form (solid or liquid). Examples of how water can be found on Earth as water or ice could include a frozen pond, a liquid pond, a frozen lake, or a liquid lake.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Constructing explanations and designing solutions Obtaining, evaluating, and communicating information	The Role of Water in Earth's Surface Processes Water is found in the ocean, rivers, lakes, and ponds. Water exists as solid ice and in liquid form. (LE.ESS2C.a)	Patterns Patterns in the natural and human designed world can be observed, used to describe phenomena, and used as evidence.
Developing and using models		
Planning and carrying out investigations		
Analyzing and interpreting data		
Engaging in argument from evidence		
Developing and using models Planning and carrying out investigations Analyzing and interpreting data		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Pebbles, Sand, and Silt Investigations Guide:

Investigation 2, Parts 3-4 Investigation 4, Parts 3-4

Pebbles, Sand, and Silt Science Resources Book:

"Rocks Move" "Landforms" "Preventing Erosion" "Land and Water on Earth"

Grade 3-PS2

Motion and Stability: Forces and Interactions

Performance Expectation 3-PS2-1

Students who demonstrate understanding can:

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Clarification Statement: Examples could include an unbalanced force on one side of an object that can make it start moving, or balanced forces pushing on an object from opposite sides will not produce any motion at all. Investigations include one variable at a time: number, size, or direction of forces.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems	Forces and Motion Each force acts on one particular object	Cause and Effect Cause and effect relationships are routinely
Asking questions and demining problems	and has both strength and a direction. An	identified, tested, and used to explain
Developing and using models	object at rest typically has multiple forces	change.
	acting on it but they add to give zero net	
Planning and carrying out investigations	force on the object. (UE.PS2A.a) Forces that	
Analyzing and interpreting data	do not sum to zero can cause changes in the object's speed or direction of motion.	
	(Qualitative and conceptual, but not	
Using mathematics and computational thinking	quantitative addition of forces are used at	
	this level.) (UE.PS2A.b)	
Constructing explanations and		
designing solutions	Types of Interactions	
Obtaining, evaluating, and communicating	Objects in contact exert forces on each	
information	other. (UE.PS2B.a)	

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Motion and Matter Investigations Guide:

Investigation 1, Parts 1-3 Investigation 2, Parts 1-4

Motion and Matter Science Resources Book:

"Magnetism and Gravity" "What Scientists Do" "Change of Motion" "Patterns of Motion" "What Goes Around"

Grade 3-PS2

Motion and Stability: Forces and Interactions

Performance Expectation 3-PS2-2

Students who demonstrate understanding can:

Make observations and/or measurements of an object's motion to provide evidence that a pattern can be used to predict future motion.

Clarification Statement: Examples of motion with a predictable pattern could include a child swinging in a swing, a ball rolling back and forth in a bowl, or two children on a see-saw.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems	Forces and Motion The patterns of an object's motion in various situations can be observed and	Patterns Patterns of change can be used to make
Developing and using models	measured; when that past motion exhibits a regular pattern, future motion can be	predictions.
Planning and carrying out investigations	predicted from it. (Technical terms, such as	
Analyzing and interpreting data	magnitude, velocity, momentum, and vector quantity, are not introduced at this level, but the concept that some quantities need both	
Using mathematics and computational thinking	size and direction to be described is developed.) (UE.PS2A.c)	
Constructing explanations and designing solutions		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Motion and Matter Investigations Guide:

Investigation 1, Parts 1-3 Investigation 2, Parts 1-4

Motion and Matter Science Resources Book:

"Magnetism and Gravity" "What Scientists Do" "Change of Motion" "Patterns of Motion" "What Goes Around"

Grade 3-PS2

Motion and Stability: Forces and Interactions

Performance Expectation 3-PS2-3

Students who demonstrate understanding can:

Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.

Clarification Statement: Examples of an electric force could include the force on hair from an electrically charged balloon or the electrical forces between a charged rod and pieces of paper; examples of a magnetic force could include the force between two permanent magnets, the force between an electromagnet and steel paper clips, or the force exerted by one magnet versus the force exerted by two magnets. Examples of cause and effect relationships could include how the distance between objects affects the strength of the force or how the orientation of magnets affects the direction of the magnetic force. Examples could include forces produced by objects that can be manipulated by students, or electrical interactions could include static electricity.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
	Types of Interaction	Cause and Effect
Asking questions and defining problems	Electric and magnetic forces between a pair	Cause and effect relationships are routinely
	of objects do not require that the objects	identified, tested, and used to explain
Developing and using models	be in contact. The sizes of the forces in	change.
	each situation depend on the properties of	
Planning and carrying out investigations	the objects and their distances apart and,	
	for forces between two magnets, on their	
Analyzing and interpreting data	orientation relative to each other.	
	(UE.PS2B.b)	
Using mathematics and computational thinking		
Constructing explanations and		
designing solutions		
Obtaining, evaluating, and communicating		

information

FOSS NEXT GENERATION REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Motion and Matter Investigations Guide: Investigation 1, Parts 1-3

Motion and Matter Science Resources Book:

"Magnetism and Gravity" "What Scientists Do" "Change of Motion"

Grade 3-PS2

Motion and Stability: Forces and Interactions

Performance Expectation 3-PS2-4

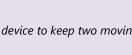
Students who demonstrate understanding can:

Define a simple design problem that can be solved by applying scientific ideas about magnets.

Clarification Statement: Examples of problems could include constructing a latch to keep a door shut or creating a device to keep two moving objects from touching each other.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting data	Types of Interactions Electric and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other.	Patterns Patterns can be used as evidence to support an explanation.
Using mathematics and computational thinking	Defining and Delimiting Engineering	
Constructing explanations and designing solutions Obtaining, evaluating, and communicating information	Problems Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (UE.ETS1A.a)	

FOSS® NEXT GENERATION™ REFERENCES


The following FOSS Next Generation elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Motion and Matter Investigations Guide:

Investigation 1, Parts 1-3

Motion and Matter Science Resources Book:

"Magnetism and Gravity" "What Scientists Do" "Change of Motion"

Grade 3-LS1

From Molecules to Organisms: Structures and Processes

Performance Expectation 3-LS1-1

Students who demonstrate understanding can:

Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.

Clarification Statement: Changes that organisms go through during their lives form a pattern. For plant life cycles there is an emphasis on flowering plants.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems	Growth and Development of Organisms Reproduction is essential to the continued existence of every kind of organism. Plants	Patterns Patterns of change can be used to make predictions.
Developing and using models	and animals have unique and diverse life cycles. (UE.LS1B.a)	
Planning and carrying out investigations	Cycles. (DL.LSID.a)	
Analyzing and interpreting data		
Using mathematics and computational thinking		
Constructing explanations and designing solutions		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Structures of Life Investigations Guide:

Investigation 1, Parts 1-3 Investigation 2, Parts 1-3

Structures of Life Science Resources Book:

"The Reason for Fruit" "The Most Important Seed" "Barbara McClintock" "Nature Journal--How Seeds Travel" "Germination" "Life Cycles"

Grade 3-LS2

Ecosystems: Interactions, Energy, and Dynamics

Performance Expectation 3-LS2-1

Students who demonstrate understanding can:

Construct and support an argument that some animals form groups that help members survive.

Clarification Statement: Arguments could include examples of group behavior such as division of labor in a bee colony, flocks of birds staying together to confuse or intimidate predators, or wolves hunting in packs to more efficiently catch and kill prey.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and using models	Social Interactions and Group Behavior Being part of a group helps animals obtain food, defend themselves, and cope with	Systems and System Models A system is a group of related parts that make up a whole and can carry out functions
Planning and carrying out investigations	changes. Groups may serve different functions and vary dramatically in size.	its individual parts cannot.
Analyzing and interpreting data	(UE.LS2D.a)	
Constructing explanations and designing solutions		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Structures of Life Investigations Guide:

Investigation 3, Parts 3 and 5

Structures of Life Science Resources Book:

"Life on Earth" "Food Chains"

Grade 3-LS3

Heredity: Inheritance and Variation Of Traits

Performance Expectation 3-LS3-1

Students who demonstrate understanding can:

Analyze and interpret data to provide evidence that plants and animals have traits inherited from their parents and that variation of these traits exists in a group of similar organisms.

Clarification Statement: Emphasis is on organisms other than humans and does not include genetic mechanisms of inheritance and prediction of traits. Data can include drawings, photographs, measurements, or written observations. Patterns are the similarities and differences in traits shared between offspring and their parents, or among siblings.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions	Inheritance of Traits Many characteristics of organisms are inherited from their parents. (UE.LS3A.a)	Patterns Similarities and differences in patterns can be used to sort, classify, communicate and
Planning and carrying out investigations	• • •	analyze simple rates of change for natural
Analyzing and interpreting data	Variation of Traits Different organisms vary in how they look and function because they have different	phenomena and designed products.
Using mathematics and computational thinking	inherited information. (UE.LS3B.a)	
Constructing explanations and designing solutions		
Developing and using models		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Structures of Life Investigations Guide:

Investigation 1, Part 3 Investigation 2, Parts 2-3 Investigation 3, Part 2 Investigation 4, Parts 1-2

Structures of Life Science Resources Book:

"Barbara McClintock" "Life Cycles" "Adaptations" "The Human Skeleton" "Barn Owls" "Fossils" "Skeletons on the Outside" "Crayfish, Snails, and Humans"

Grade 3-LS3

Heredity: Inheritance and Variation of Traits

Performance Expectation 3-LS3-2

Students who demonstrate understanding can:

Use evidence to support the explanation that traits can be influenced by the environment.

Clarification Statement: Examples of the environment affecting a trait could include normally tall plants grown with insufficient water are stunted or an animal that is given too much food and little exercise may become overweight.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions	Inheritance of Traits Other characteristics result from individuals' interactions with the	Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain
Planning and carrying out investigations	environment, which can range from diet to	change.
Analyzing and interpreting data	learning. Many characteristics involve both inheritance and environment. (UE.LS3A.b)	
Using mathematics and computational thinking	Variation of Traits	
Constructing explanations and designing solutions	The environment also affects the traits that an organism expresses. (UE.LS3B.b)	
Developing and using models		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Structures of Life Investigations Guide:

Investigation 1, Part 3 Investigation 2, Parts 2-3 Investigation 3, Part 2 Investigation 4, Parts 1-2

Structures of Life Science Resources Book:

"Barbara McClintock" "Life Cycles" "Adaptations" "The Human Skeleton" "Barn Owls" "Fossils" "Skeletons on the Outside" "Crayfish, Snails, and Humans"

Grade 3-LS4

Biological Evolution: Unity and Diversity

Performance Expectation 3-LS4-1

Students who demonstrate understanding can:

Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.

Clarification Statement: Examples of data could include type, size, and distributions of fossil organisms. Examples of fossils and environments could include major fossil types such as marine fossils found on dry land, tropical plant fossils found in arctic areas, or fossils of extinct organisms and relative ages.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
	Evidence of Common Ancestry and	Scale, Proportion, and Quantity
Planning and carrying out investigations	Diversity	Natural objects and/or observable
	Some kinds of plants and animals that once	phenomena exist from the very small to the
Analyzing and interpreting data	lived on Earth are no longer found	immensely large or from very short to very
	anywhere. (UE.LS4A.a)	long-time periods.
Constructing explanations		
	Fossils provide evidence about the types of	
Engaging in argument from evidence	organisms that lived long ago and also	
	about the nature of their environment.	
Obtaining, evaluating, and communicating	(UE.LS4A.b)	
information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Structures of Life Investigations Guide:

Investigation 4, Part 2

Structures of Life Science Resources Book:

"Barn Owls" "Fossils" "Skeletons on the Outside" "Crayfish, Snails, and Humans"

9

Grade 3-LS4

Biological Evolution: Unity and Diversity

Performance Expectation 3-LS4-2

Students who demonstrate understanding can:

Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.

Clarification Statement: Examples of cause and effect relationships could be plants that have larger thorns than other plants may be less likely to be eaten or animals that have better camouflage coloration than other animals may be more likely to survive and therefore more likely to leave offspring.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and using models	Natural Selection Sometimes the differences in characteristics between individuals of the same species	Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain
Analyzing and interpreting data	provide advantages in surviving, finding mates, and reproducing. (UE.LS4B.a)	change.
Using mathematics and computational thinking		
Constructing explanations and designing solutions		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Structures of Life Investigations Guide:

Investigation 3, Parts 2 and 5

Structures of Life Science Resources Book:

"Adaptations" "Food Chains"

Grade 3-LS4

Biological Evolution: Unity and Diversity

Performance Expectation 3-LS4-3

Students who demonstrate understanding can:

Construct and support an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.

Clarification Statement: Examples of evidence could include needs and characteristics of the organisms and habitats involved. The organisms and their habitats make up a system in which the parts depend on each other.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and using models	Adaptation For any particular environment, some kinds of organisms survive well, some survive less	Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain
Analyzing and interpreting data	well, and some cannot survive at all.	change.
Using mathematics and computational thinking	(UE.LS4C.a)	
Constructing explanations and designing solutions		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Structures of Life Investigations Guide:

Investigation 3, Parts 2, 4-5

Structures of Life Science Resources Book:

"Adaptations" "Inside a Snail's Shell" "A Change in the Environment" "Food Chains"

Grade 3-LS4

Biological Evolution: Unity and Diversity

Performance Expectation 3-LS4-4

Students who demonstrate understanding can:

Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.

Clarification Statement: Examples of environmental change(s) could include changes in land characteristics, water distribution, temperature, food, and other biological communities. Louisiana specific examples could include impacts related to levees, dams, crop rotations, irrigation systems, hunting limits, diversion canals, or sea level rise.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and using models	Ecosystem Dynamics, Functioning, and Resilience When the environment changes in ways	Systems and Systems Models A system can be described in terms of its components and their interactions.
Analyzing and interpreting data	that affect a place's physical characteristics, temperature, or availability of resources,	
Using mathematics and computational thinking	some organisms survive and reproduce, others move to new locations, yet others	
Constructing explanations and designing solutions	move into the transformed environment, and some die. (UE.LS2C.a)	
Engaging in argument from evidence	Biodiversity and Humans Populations live	
Obtaining, evaluating, and communicating information	in a variety of habitats, and change in those habitats affects the organisms living there. (UE.LS4D.a)	
	Developing Possible Solutions At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs. (ETS.UE.1B.b)	

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Structures of Life Investigations Guide:

Investigation 3, Parts 2, 4-5

Structures of Life Science Resources Book: "Adaptations" "Inside a Snail's Shell"

"A Change in the Environment" "Food Chains"

FOSS

Grade 3-ESS2 Earth's Systems

Performance Expectation 3-ESS2-1

Students who demonstrate understanding can:

Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.

Clarification Statement: Examples of data could include average temperature, precipitation, and wind direction. Examples of data representations could include pictographs and bar graphs.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Analyzing and interpreting dataSolutionConstructing explanations andthdesigning solutionsor	Weather and Climate Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next. (UE.ESS2D.a)	Patterns Patterns of change can be used to make predictions

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Water and Climate Investigations Guide:

Investigation 4, Parts 1-3

Water and Climate Science Resources Book:

"Climate Regions" "Wetlands for Flood Control" "Conserving Water during Droughts"

Grade 3-ESS2

Earth's Systems

Performance Expectation 3-ESS2-2

Students who demonstrate understanding can:

Obtain and combine information to describe climates in different regions around the world.

Clarification Statement: Information could include rainfall and temperature data.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems	Weather and Climate Climate describes a range of an area's typical weather conditions and the extent	Patterns Patterns of change can be used to make predictions.
Developing and using models	to which those conditions vary over years. (UE.ESS2D.b)	
Planning and carrying out investigations	(01.13320.0)	
Analyzing and interpreting data		
Using mathematics and computational thinking		
Constructing explanations and designing solutions		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Water and Climate Investigations Guide:

Investigation 2, Parts 1-5 Investigation 3, Parts 1-5 Investigation 4, Parts 1-3

Water and Climate Science Resources Book:

"Vacation Aggravation" "Celsius and Fahrenheit" "Water: Hot and Cold" "Studying Weather" "Drying Up" "Surface-Area Experiment" "Climate Regions" "Wetlands for Flood Control" "Conserving Water during Droughts"

Grade 3-ESS3

Earth and Human Activity

Performance Expectation 3-ESS3-1

Students who demonstrate understanding can:

Make a claim about the merit of a design solution that reduces the impact of a weather-related hazard.

Clarification Statement: Examples of design solutions to weather-related hazards could include barriers to prevent flooding (including levees), wind-resistant roofs, tornado shelters and lightning rods.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems Planning and carrying out investigations	Natural Hazards A variety of natural hazards result from natural processes. Humans cannot eliminate natural hazards but can take	Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change.
Analyzing and interpreting data Constructing explanations and	steps to reduce their impacts. (UE.ESS3B.a) Developing Possible Solutions Research on a problem should be carried	
designing solutions	out before beginning to design a solution. Testing a solution involves investigating	
Engaging in argument from evidence Obtaining, evaluating, and communicating	how well it performs under a range of likely conditions. (ETS.UE.1B.a)	
information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Water and Climate Investigations Guide:

Investigation 4, Parts 1-3 Investigation 5, Parts 1-3

Water and Climate Science Resources Book:

"Climate Regions" "Wetlands for Flood Control" "Conserving Water during Droughts" "Water: A Vital Resource" "Natural Resources" "Ellen Swallow Richards: An Early Ecologist" "Making Drinking Water Safe" "Using the Energy of Water"

Grade 4-PS3

Energy

Performance Expectation 4-PS3-1

Students who demonstrate understanding can:

Use evidence to construct an explanation relating the speed of an object to the energy of that object.

Clarification Statement: Relating the speed of an object to the energy of the object does not require calculation of the object's speed

Disciplinary Core Ideas	Crosscutting Concepts
Definitions of Energy The faster a given object is moving, the more energy it possesses. (UE.PS3A.a)	Energy and Matter Energy can be transferred in various ways and between objects.
	, ,
	Definitions of Energy The faster a given object is moving, the more energy it possesses. (UE.PS3A.a)

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Energy Investigations Guide: Investigation 4, Parts 1-3

Energy Science Resources Book: "Energy" "What Causes Change of Motion?" "Bowling" "Force and Energy" "Potential and Kinetic Energy at Work"

Grade 4-PS3

Energy

Performance Expectation 4-PS3-2

Students who demonstrate understanding can:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Clarification Statement: When energy is transferred it may change forms such as when light from the sun warms a window pane.

Science and	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems Developing and using models	Definitions of Energy Energy can be moved from place to place by moving objects or through sound, light, or electric currents. (UE.PS3A.b)	Energy and Matter Energy can be transferred in various ways and between objects.
Planning and carrying out investigations	Conservation of Energy And Energy	
Analyzing and interpreting data	Transfer Energy is present whenever there are moving objects, sound, light, or heat. When	
Using mathematics and computational thinking	objects collide, energy can be transferred from one object to another, thereby	
Constructing explanations and designing solutions	changing their motion. In such collisions, some energy is typically also transferred to	
Engaging in argument from evidence	the surrounding air; as a result, the air gets heated and sound is produced. (UE.PS3B.a)	
Obtaining, evaluating, and communicating information	Light also transfers energy from place to place. (UE.PS3B.b)	
	Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the	
	energy of motion into electrical energy. (UE.PS3B.c)	

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Energy Investigations Guide: Investigation 1, Parts 1-4 Investigation 3, Parts 1-3 Investigation 4, Parts 1-3 Investigation 5, Parts 1-3 Energy Science Resources Book: "Edison Sees the Light" "Energy Sources" "Science Practices" "Engineering Practices" "Thinking Like an Engineer" "Engineering a Solar Lighting Solution" "Electricity Creates Magnetism" "Using Magnetic Fields" "Electromagnets Everywhere" "Morse Gets Clicking" "Energy" "What Causes Change of Motion?" "Bowling" "Force and Energy" "Potential and Kinetic Energy at Work"

Grade 4-PS3

Energy

Performance Expectation 4-PS3-3

Students who demonstrate understanding can:

Ask questions and predict outcomes about the changes in energy that occur when objects collide.

Clarification Statement: Emphasis is on the change in the energy due to the change in speed, not on the forces, as objects interact. Quantitative measurements of energy are not included.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Aching successions	Definitions of Energy	Energy and Matter
Asking questions	Energy can be moved from place to place	Energy can be transferred in various ways and between objects.
Planning and carrying out investigations	by moving objects or through sound, light, or electric currents. (UE.PS3A.b)	and between objects.
rialining and carrying out intestigations	of electric currents. (OE. 155A.b)	
Analyzing and interpreting data	Conservation of Energy And Energy	
	Transfer	
Using mathematics and computational thinking	Energy is present whenever there are	
	moving objects, sound, light, or heat. When	
Constructing explanations	objects collide, energy can be transferred	
	from one object to another, thereby	
Engaging in argument from evidence	changing their motion. In such collisions,	
Obtaining and besting and assumption the	some energy is typically also transferred to	
Obtaining, evaluating, and communicating	the surrounding air; as a result, the air gets	
information	heated and sound is produced. (UE.PS3B.a)	
	Deletionship Detwoon Energy and Forces	
	Relationship Between Energy and Forces When objects collide, the contact forces	
	transfer energy so as to change the objects'	
	motions. (UE.PS3C.a)	

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Energy Investigations Guide:

Investigation 4, Parts 1-3

Energy Science Resources Book:

"Energy" "What Causes Change of Motion?" "Bowling" "Force and Energy" "Potential and Kinetic Energy at Work"

Grade 4-PS3

Energy

Performance Expectation 4-PS3-4

Students who demonstrate understanding can:

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

Clarification Statement: Examples of devices could include electric circuits that convert electrical energy into motion energy of a vehicle, light, or sound and a passive solar heater that converts light into heat. Example of constraints could include the materials, cost, or time to design the device.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Planning and carrying out investigations	Conservation of Energy and Energy Transfer Energy can also be transferred from place	Energy And Matter Energy can be transferred in various ways and between objects
Analyzing and interpreting data	to place by electric currents, which can then be used locally to produce motion, sound,	
Using mathematics and computational thinking	heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy.	
Constructing explanations and designing solutions	(UE.PS3B.c)	
Obtaining, evaluating, and communicating information	Energy in Chemical Processes and Everyday Life The expression "produce energy" typically refers to the conversion of stored energy into a desired form for	
Asking questions and defining problems	practical use. (UE.PS3D.a)	
Developing and using models	Optimizing the Design Solution Different solutions need to be tested in	
Obtaining, evaluating, and communicating information	order to determine which of them best solves the problem, given the criteria and the constraints. (UE.ETS1C.a)	
Engaging in argument from evidence	· · ·	

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Energy Investigations Guide: Investigation 1, Parts 1-4 Investigation 2, Parts 1-3 Investigation 3, Parts 1-3 Investigation 5, Parts 1-3

Energy Science Resources Book: "Edison Sees the Light" "Energy Sources" "Series and Parallel Circuits" "Science Practices" "Engineering Practices" "Thinking Like an Engineer" "Engineering a Solar Lighting Solution" "When Magnet Meets Magnet" "Magnificent Magnetic Models" "Make a Magnetic Compass" "Electricity Creates Magnetism" "Using Magnetic Fields" "Electromagnets Everywhere" "Morse Gets Clicking" "Waves" "More about Sound" "Light Interactions" "Throw a Little Light on Sight" "More Light on the Subject" "Alternative Sources of Energy" "Ms. Osgood's Class Report"

Grade 4-PS4

Waves and Their Applications in Technologies for Information Transfe

Performance Expectation4-PS4-1

Students who demonstrate understanding can:

Develop a model of waves to describe patterns in terms of amplitude and wavelength and to show that waves can cause objects to move.

Clarification Statement: Examples of models could include diagrams, analogies, or physical models using wire to illustrate wavelength and amplitude of waves. Examples of wave patterns could include the vibrating patterns associated with sound or the vibrating patterns of seismic waves produced by earthquakes. Does not include interference effects, electromagnetic waves, non-periodic waves, or quantitative models of amplitude and wavelength.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems	Wave Properties Waves, which are regular patterns of motion, can be made in water by disturbing	Patterns Similarities and differences in patterns can be used to sort, classify, communicate and
Developing and using models	the surface. When waves move across the	analyze simple rates of change for natural
Planning and carrying out investigations	surface of deep water, the water goes up and down in place; it does not move in the direction of the wave except when the	phenomena and designed products.
Analyzing and interpreting data	water meets the beach. (UE.PS4A.a)	
Using mathematics and computational thinking	Waves of the same type can differ in amplitude (height of the wave) and wavelength (spacing between wave peaks).	
Constructing explanations and designing problems	(UE.PS4A.b)	
Obtaining, evaluating, and communicating information		

FOSS[®] NEXT GENERATION[™] REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Energy Investigations Guide: Investigation 5, Parts 1-3

Energy Science Resources Book: "Waves" "More about Sound" "Light Interactions" "Throw a Little Light on Sight" "More about Light on the Subject" "Alternative Sources of Electricity" "Ms. Osgood's Class Report"

Grade 4-PS4

Waves and Their Applications in Technologies for Information Transfe

Performance Expectation 4-PS4-2

Students who demonstrate understanding can:

Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.

Clarification Statement: Develop a model to make sense of a phenomenon involving the relationship between light reflection and visibility of objects. In the model, identify the relevant components including light and its source, objects, the path that light follows, and the eye.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems Developing and using models	Electromagnetic Radiation An object can be seen when light reflected from its surface enters the eyes. (UE.PS4B.a)	Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change.
Planning and carrying out investigations		
Analyzing and interpreting data		
Using mathematics and computational thinking		
Constructing explanations and designing problems		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Energy Investigations Guide: Investigation 5, Parts 1-3

Energy Science Resources Book: "Waves" "More about Sound" "Light Interactions" "Throw a Little Light on Sight" "More about Light on the Subject" "Alternative Sources of Electricity" "Ms. Osgood's Class Report"

Grade 4-LS1

From Molecules to Organisms: Structure and Processes

Performance Expectation 4-LS1-1

Students who demonstrate understanding can:

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.

Clarification Statement: Examples of structures could include thorns, stems, roots, colored petals, heart, stomach, lung, brain, shells, fur or skin.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems	Structure and Function Plants and animals have both internal and external structures that serve various	Systems and System Models A system can be described in terms of its components and their interactions.
Developing and using models	functions in growth, survival, behavior, and reproduction. (UELS1A.a)	
Planning and conducting investigations	reproduction. (DELSTA.a)	
Analyzing and interpreting data		
Constructing explanations and designing solutions		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Environments Investigations Guide:

Investigation 1, Parts 1-3 Investigation 2, Parts 1-4

Environments *Science Resources* Book:

"Two Terrestrial Environments" "Darkling Beetles" "Setting Up a Terrarium" "Isopods" "Amazon Rainforest Journal" "Freshwater Environments" "What Is an Ecosystem?" "What Is an Ecosystem?" "Food Chains and Food Webs" "Human Activities and Aquatic Environments" "Comparing Aquatic and Terrestrial Environments" "Animal Sensory Systems" "Saving Murrelets through Mimicry"

Grade 4-LS1

From Molecules to Organisms: Structure and Processes

Performance Expectation 4-LS1-2

Students who demonstrate understanding can:

Construct an explanation to describe how animals receive different types of information through their senses, process the information in their brains, and respond to the information in different ways.

Clarification Statement: Emphasis is on systems of information transfer. Responses could include animals running from predators, animals returning to breeding grounds, animals scavenging for food, or humans responding to stimuli.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems Developing and using models	Information Processing Different sense receptors are specialized for particular kinds of information, which then may be processed by the animal's brain.	Cause and Effect Events that occur together with regularity might or might not be a cause and effect relationship.
Planning and conducting investigations	Animals are able to use their perceptions and memories to guide their actions. (UE.LS1D.a)	
Analyzing and interpreting data Constructing explanations and designing solutions		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Environments Investigations Guide:

Investigation 1, Parts 1-3 Investigation 2, Parts 1-4

Environments *Science Resources* Book:

"Two Terrestrial Environments" "Darkling Beetles" "Setting Up a Terrarium" "Isopods" "Amazon Rainforest Journal" "Freshwater Environments" "What Is an Ecosystem?" "Human Activities and Aquatic Environments" "Human Activities and Aquatic Environments" "Comparing Aquatic and Terrestrial Environments" "Animal Sensory Systems" "Saving Murrelets through Mimicry"

Grade 4-ESS

Earth's Place in The Universe

Performance Expectation 4-ESS1-1

Students who demonstrate understanding can:

Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in landforms over time.

Clarification Statement: Examples of evidence from patterns could include rock layers with marine shell fossils above rock layers with plant fossils and no shells, indicating a change from land to water over time, and a canyon with different rock layers in the walls and a river in the bottom, indicating that over time a river cut through the rock. Does not include specific knowledge of the mechanism of rock formation or memorization of specific rock formation and layers.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions Developing and using models Planning and carrying out investigations Analyzing and interpreting data	The History of Planet Earth Local, regional, and global patterns of rock formations reveal changes over time due to Earth's forces such as earthquakes and volcanoes. The presence and location of certain fossil types indicate the order in which rock layers were formed. (UE.ESS1C.a)	Patterns Patterns can be used as evidence to support an explanation.
Constructing explanations Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Soils, Rocks, and Landforms Investigations Guide:

Investigation 2, Parts 1-4

Soils, Rocks, and Landforms Science Resources Book:

"Erosion and Deposition" "Landforms Photo Album" "Fossils Tell a Story" "Pieces of a Dinosaur Puzzle"

Grade 4-ESS2

Earth's Systems

Performance Expectation 4-ESS2-1

Students who demonstrate understanding can:

Plan and conduct investigations on the effects of water, ice, wind, and vegetation on the relative rate of weathering and erosion.

Clarification Statement: Examples of variables to test could include angle of slope in the downhill movement of water, amount of vegetation, speed of wind, relative rate of deposition, cycles of freezing and thawing of water, cycles of heating and cooling, and volume of water flow.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions	Earth Materials and Systems Rainfall helps to shape the land and affects the types of living things found in a region.	Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain
Developing and using models	Water, ice, wind, living organisms, and	change.
Planning and carrying out investigations	gravity break rocks, soils, and sediments into smaller particles and move them around. (UE.ESS2A.a)	
Analyzing and interpreting data		
Constructing explanations	Biogeology Living things affect the physical	
Engaging in argument from evidence	characteristics of their environment. (UE.ESS2E.a)	
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Soils, Rocks, and Landforms Investigations Guide:

Investigation 1, Parts 1-4 Investigation 2, Parts 1-4

Soils, Rocks, and Landforms Science Resources Book:

"What Is Soil?" "Weathering" "Erosion and Deposition" "Landforms Photo Album" "Fossils Tell a Story" "Pieces of a Dinosaur Puzzle"

Grade 4-ESS2

Earth's Systems

Performance Expectation 4-ESS2-2

Students who demonstrate understanding can: Analyze and interpret data from maps to describe patterns of Earth's features

Clarification Statement: Maps can include topographic maps of Earth's land and ocean floor, as well as maps of the locations of mountains, continental boundaries, volcanoes, and earthquakes.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
A	Plate Tectonics and Large-Scale System	Patterns
Asking questions	Interactions The locations of mountain ranges, deep	Patterns can be used as evidence to support an explanation.
Developing and using models	ocean trenches, ocean floor structures,	
	earthquakes, and volcanoes occur in	
Planning and carrying out investigations	patterns. Most earthquakes and volcanoes	
	occur in bands that are often along the	
Analyzing and interpreting data	boundaries between continents and	
Construction combractions	oceans. Major mountain chains form inside	
Constructing explanations	continents or near their edges. Maps can help locate the different land and water	
Engaging in argument from evidence	features of Earth. (UE.ESS2B.a)	
5555		
Obtaining, evaluating, and communicating		
information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Soils, Rocks, and Landforms Investigations Guide:

Investigation 2, Parts 1-4 Investigation 3, Parts 1-4

Soils, Rocks, and Landforms Science Resources Book:

"Erosion and Deposition" "Landforms Photo Album" "Fossils Tell a Story" "Pieces of a Dinosaur Puzzle" "Topographic Maps" "The Story of Mount Shasta" "It Happened So Fast!"

11

Grade 4-ESS2

Earth's System

Performance Expectation 4-ESS2-3

Students who demonstrate understanding can:

Ask questions that can be investigated and predict reasonable outcomes about how living things affect the physical characteristics of their environment.

Clarification Statement: Investigations include making observations in various habitats in real life or virtual circumstances. Living things could include animals such as beavers, crawfish, armadillos, nutria, gophers, and plants such as kudzu, water hyacinth, and Chinese tallow.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and using models Planning and conducting investigations	Biogeology Living things affect the physical characteristics of their environment. (UE.ESS2E.a)	Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change.
Analyzing and interpreting data		
Using mathematics and computational thinking		
Constructing explanations and designing solutions		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Environments Investigations Guide:

Investigation 1, Parts 1-4 Investigation 2, Parts 1-3

Environments Science Resources Book:

"Brine Shrimp" "The Mono Lake Story" "What Happens When Ecosystems Change?" "The Shrimp Club" "Variation and Selection"

Grade 4-ESS3

Earth and Human Activity

Performance Expectation 4-ESS3-1

Students who demonstrate understanding can:

Obtain and combine information to describe that energy and fuels are derived from renewable and non-renewable resources and how their uses affect the environment.

Clarification Statement: Examples of renewable energy resources could include wind energy, hydroelectric energy, and solar energy; nonrenewable energy resources are fossil fuels. Examples of environmental effects could include loss of habitat due to dams, loss of habitat due to surface mining, and air pollution from burning fossil fuels.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and using models	Natural Resources Energy and fuels (fossil fuels, wind energy, solar energy, hydroelectric energy) that	Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain
Planning and conducting investigations	humans use are derived from natural	change
Analyzing and interpreting data	sources, and their use affects the environment in multiple ways. Some resources are renewable over time, and	
Using mathematics and computational thinking	others are not. (UE.ESS3A.a)	
Constructing explanations and designing solutions		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Environments Investigations Guide:

Investigation 3, Parts 1-4

Environments Science Resources Book:

"Brine Shrimp" "The Mono Lake Story" "What Happens When Ecosystems Change?" "The Shrimp Club" "Variation and Selection"

Grade 4-ESS3

Earth and Human Activity

Performance Expectation 4-ESS3-2

Students who demonstrate understanding can:

Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.

Clarification Statement: Examples of solutions could include designing flood, wind, or earthquake resistant structures and models to prevent soil erosion.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and using models Planning and conducting investigations	Natural Hazards A variety of natural hazards result from natural processes. Humans cannot eliminate natural hazards but can take	Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change.
Analyzing and interpreting data	steps to reduce their impacts. (UE.ESS3B.a)	
Using mathematics and computational thinking Constructing explanations and designing	Developing Possible Solutions to Engineering Problems Testing a solution involves investigating how well it performs under a range of likely conditions. (UE.ETS1B.d)	
solutions Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Soils, Rocks, and Landforms Investigations Guide:

Investigation 3, Parts 1-4 Investigation 4, Parts 1-3

Soils, Rocks, and Landforms Science Resources Book:

"Topographic Maps" "The Story of Mount Shasta" "It Happened So Fast!" "Monumental Rocks" "Geoscientists at Work" "Making Concrete" "Earth Materials in Art" "Where Do Rocks Come From?"

Grade 5-PS1

Matter and Its Interactions

Performance Expectation 5-PS1-1

Students who demonstrate understanding can:

Develop a model to describe that matter is made of particles too small to be seen.

Clarification Statement: Examples of evidence could include adding air to expand a basketball, compressing air in a syringe, dissolving sugar in water, or evaporating salt water. Does not include atomic scale mechanism of evaporation and condensation or defining the unseen particles.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions and defining problems	Structures and Properties Of Matter Matter of any type can be subdivided into particles that are too small to see, but even	Scale, Proportion, and Quantity Natural objects and/or observable phenomena exist from the very small to the
Developing and using models	then the matter still exists and can be	immensely large or from very short to very
Planning and carrying out investigations	detected by other means. A model showing that gases are made from matter particles that are too small to see and are moving	long time periods.
Analyzing and interpreting data	freely around in space can explain many	
Using mathematics and computational thinking	observations, including boiling water, the inflation and shape of a balloon, and the effects of air on larger particles or objects.	
Constructing explanations and	(UE.PS1A.a)	
designing solutions		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Mixtures and Solutions Investigations Guide:
Investigation 1, Parts 1-4
Investigation 2, Parts 1-3
Investigation 3, Parts 1-4
Investigation 4, Parts 1-4
Investigation 5, Parts 1-3
Mixtures and Solutions Science Resources Book:
Mixtures and Solutions Science Resources Book: "Mixtures"
"Mixtures"
"Mixtures" "Taking Mixtures Apart"

"Solutions Up Close" "Concentrated Solutions""The Air" "Famous Scientists" "Carbon Dioxide Concentration in the Air" "The Frog Story" "The Bends" "A Sweet Solution" "Sour Power" "East Bay Academy for Young Scientists" "Drinking Ocean Water" "Creative Solutions" "Ask a Chemist" "When Substances Change" "Air Bags"

"Celsius and Fahrenheit"

"The Story of Salt"

"Solid to Liquid"

"Beachcombing Science"

"Liquid and Gas Changes"

Grade 5-PS1

Matter and Its Interactions

Performance Expectation 5-PS1-2

Students who demonstrate understanding can:

Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total amount of matter is conserved.

Clarification Statement: Examples of chemical changes includes reactions that produce new substances with new properties. Examples of physical changes could include phase changes, dissolving, or mixing.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
	Structure and Properties Of Matter	Energy and Matter
Asking questions and defining problems	The amount of mass in matter is conserved when it changes form, even in transitions in	Matter flows and cycles can be tracked in terms of mass of the substances before and
Developing and using models	which it seems to vanish. (UE.PS1A.b)	after a process occurs. The total mass of the
		substances does not change. This is what is
Planning and carrying out investigations	Chemical Reactions	meant by conservation of matter. Matter is
	When two or more different substances are	transported into, out of, and within systems.
Analyzing and interpreting data	mixed, a new substance with different	
	properties may be formed. (UE.PS1B.a)	
Using mathematics and computational thinking		
Constructing explanations and designing	No matter what reaction or change in properties occurs, the total mass of the	
solutions	substances does not change. (UE.PS1B.b)	
Engaging in argument from evidence		
Obtaining, evaluating, and communicating		
information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Mixtures and Solutions Investigations Guide:

Investigation 1, Parts 1-4 Investigation 2, Parts 1-3 Investigation 3, Parts 1-4 Investigation 4, Parts 1-4 Investigation 5, Parts 1-3

Mixtures and Solutions Science Resources Book:

"Mixtures" "Taking Mixtures Apart" "Science Practices" "Engineering Practices" "Extracts" "The Story of Salt" "Beachcombing Science" "Solid to Liquid" "Liquid and Gas Changes" "Celsius and Fahrenheit" "Solutions Up Close" "Concentrated Solutions" "The Air" "Famous Scientists" "Carbon Dioxide Concentration in the Air" "The Frog Story" "The Bends" "A Sweet Solution" "Sour Power" "East Bay Academy for Young Scientists" "Drinking Ocean Water" "Creative Solutions" "Ask a Chemist" "When Substances Change" "Air Bags"

Grade 5-PS1

Matter and Its Interactions

Performance Expectation 5-PS1-3

Students who demonstrate understanding can:

Make observations and measurements to identify materials based on their properties.

Clarification Statement: Examples of materials to be identified could include baking soda and other powders, metals, minerals, or liquids. Examples of properties could include color, hardness, reflectivity, electrical conductivity, thermal conductivity, response to magnetic forces, or solubility; density is not intended to be used as an identifiable property. No attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.

Science and Engineering Practices

Asking questions and defining problems

Developing and using models

Planning and carrying out investigations

Analyzing and interpreting data

Using mathematical and computational thinking

Constructing explanations and designing solutions

Engaging in argument from evidence

Obtaining, evaluating, and communicating information

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Mixtures and Solutions Investigations Guide:

Investigation 4, Parts 1-4 Investigation 5, Parts 1-3

Mixtures and Solutions Science Resources Book:

"The Bends" "A Sweet Solution" "Sour Power" "East Bay Academy for Young Scientists" "Drinking Ocean Water" "Creative Solutions" "Ask a Chemist" "When Substances Change" "Air Bags"

Disciplinary Core Ideas

Structures and Properties of Matter Measurements of a variety of properties can be used to identify materials. (UE.PS1A.c)

Crosscutting Concepts

Scale, Proportion, and Quantity Standard units are used to measure and describe physical quantities such as mass, time, temperature, and volume.

Grade 5-PS1

Matter and Its Interactions

Performance Expectation 5-PS1-4

Students who demonstrate understanding can:

Conduct an investigation to determine whether the mixing of two or more substances results in new substances.

Clarification Statement: Examples of interactions forming new substances can include mixing baking soda and vinegar. Examples of interactions not forming new substances can include mixing baking soda and water.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions	Chemical Reactions When two or more different substances are	Cause and Effect Cause and effect relationships are routinely
Developing and using models	mixed, a new substance with different	identified, tested, and used to explain
Planning and carrying out investigations	properties may be formed. (UE.PS1B.a)	change.
Analyzing and interpreting data		
Constructing explanations		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Mixtures and Solutions Investigations Guide:

Investigation 5, Parts 1-3

Mixtures and Solutions Science Resources Book:

"Ask a Chemist" "When Substances Change" "Air Bags"

Grade 5-PS2

Motion and Stability: Forces and Interactions

Performance Expectation 5-PS2-1

Students who demonstrate understanding can:

Support an argument that the gravitational force exerted by the Earth is directed down.

Clarification Statement: "Down" is a local description of the direction that points toward the center of the spherical Earth. Earth's mass causes objects to have a force on them that points toward the center of the Earth, "down". Support for arguments can be drawn from diagrams, evidence, and data that are provided. This does not include mathematical representation of gravitational force.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and using models	Types of Interactions The gravitational force of Earth acting on an object near Earth's surface pulls that	Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain
Planning and carrying out investigations	object toward the planet's center. (UE.PS2B.c)	change.
Analyzing and interpreting data		
Using mathematics and computational thinking		
Constructing explanations		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Earth and Sun Investigations Guide:

Investigation 2, Parts 1-5

Earth and Sun Science Resources Book:

"The Night Sky" "Looking through Telescopes" "Comparing the Size of Earth and the Moon" "Apollo 11 Space Mission" "How Did Earth's Moon Form?" "Changing Moon" "Lunar Cycle" "Eclipse" "Eclipse" "Exploring the Solar System" "Planets of the Solar System" "Planets of the Solar System" "Why Doesn't Earth Fly Off into Space?" "Stargazing" "Star Scientists" "Our Galaxy"

Grade 5-PS3

Matter and Energy in Organisms and Ecosystems

Performance Expectation 5-PS3-1

Students who demonstrate understanding can:

Use models to describe that energy in animals' food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun.

Clarification Statement: Examples of models could include diagrams or flowcharts.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions	Energy in Chemical Processes and	Energy and Matter
	Everyday Life	Energy can be transferred in various ways
Developing and using models	The energy released from food was once	and between objects
	energy from the sun that was captured by	
Planning and carrying out investigations	plants in the chemical process that forms	
	plant matter (from air and water).	
Using mathematics and computational thinking	(UE.PS3D.b)	
Analyzing and interpreting data	Organization for Matter and Energy	
	Flow in Organisms	
Constructing explanations	Food provides animals with the materials	
	they need for body repair and growth and	
Engaging in argument from evidence	energy they need to maintain body warmth	
	and for motion. (UE.LS1C.a)	
Obtaining, evaluating, and communicating		
information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Living Systems Investigations Guide:	"Getting Nutrients"
Investigation 1, Parts 1-4	"The Human Digestive System"
Investigation 2, Parts 1-3	"Leaf Classification"
Investigation 3, Parts 1-3	"Plant Vascular Systems"
Investigation 4, Parts 1-4	"The Story of Maple Syrup"
	"The Human Circulatory System"
Living Systems Science Resources Book:	"The Human Respiratory System"
"Introduction to Systems"	"Other Circulatory and Respiratory Systems"
"Is Earth a System?"	"Structures of the Brain"
"The Biosphere"	"Sensory Systems"
"Monterey Bay National Marine Sanctuary"	"Animal Communication"
"Comparing Aquatic and Terrestrial Ecosystems"	"Monarch Migration"
"There's Yeast in My Bread!"	"North Atlantic Ocean Ecosystem"
"Producers"	

Grade 5-LS1

FOS

From Molecules to Organisms: Structures and Processes

Performance Expectation 5-LS1-1

Students who demonstrate understanding can:

Ask questions about how air and water affect the growth of plants.

Clarification Statement: Emphasis is on the idea that plant matter comes mostly from air and water, not from the soil. The chemical processes of photosynthesis and cellular respiration are not addressed at this grade level.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions	Organization for Matter and Energy	Energy and Matter
Developing and using models	Flow in Organisms Plants acquire their material for growth chiefly from air and water. (UE.LS1C.b)	Matter is transported into, out of, and within systems.
Planning and carrying out investigations		
Using mathematics and computational thinking		
Analyzing and interpreting data		
Constructing explanations		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Living Systems Investigations Guide:

Investigation 2, Parts 1-3 Investigation 3, Parts 1-3

Living Systems Science Resources Book:

"There's Yeast in My Bread!" "Producers" "Getting Nutrients" "The Human Digestive System" "Leaf Classification" "Plant Vascular Systems" "The Story of Maple Syrup" "The Human Circulatory System" "The Human Respiratory System" "Other Circulatory and Respiratory Systems"

Grade 5-LS2

Ecosystems

Performance Expectation 5-LS2-1

Students who demonstrate understanding can:

Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. *Clarification Statement: Emphasis is on the idea that matter that is not food (air, water, decomposed materials in soil) is changed by plants into matter that is food. Examples of systems could include organisms, ecosystems of the Earth not including molecular explanations.*

and matter that is food. Examples of systems could include organisms, ecosystems of the Earth not including molecular explanations.		
Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions	Interdependent Relationships in Ecosystems	Systems and System Models
Developing and using models	The food of almost any kind of animal can be traced back to plants. Organisms are related in food webs in which some animals eat plants for	A system can be described in terms of its components and their interactions.
Planning and carrying out investigations	food and other animals eat the animals that eat	
	plants. (UE.LS2A.a)	
Analyzing and interpreting data	Some organisms, such as fungi and bacteria,	
Using mathematics and computational thinking	break down dead organisms and therefore	
	operate as "decomposers." Decomposition	
Constructing explanations	eventually restores (recycles) some materials	
Engaging in argument from evidence	back to the soil. (UE.LS2A.b)	
Obtaining, evaluating, and communicating information	Organisms can survive only in environments in which their particular needs are met. A healthy ecosystem is one in which multiple species of different types are each able to meet their needs in a relatively stable web of life. (UE.LS2A.c)	
	Newly introduced species can damage the balance of an ecosystem. (UE.LS2A.d)	
	Cycles of Matter and Energy Transfer in Ecosystems Matter cycles between the air and soil and among plants, animals, decomposers, and microbes as these organisms live and die. Organisms obtain gases, and water, from the environment, and release waste matter (gas, liquid, or solid) back into the environment. (UE.LS2B.a)	

FOSS® NEXT GENERATION™ REFERENCES

The following FOSS Next Generation elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Living Systems Investigations Guide:

Investigation 1, Parts 1-4 Investigation 2, Parts 1-3 Investigation 3, Parts 1-3 Investigation 4, Parts 1-4

Living Systems Science Resources Book:

"Introduction to Systems" "Is Earth a System?" "The Biosphere" "Monterey Bay National Marine Sanctuary" "Comparing Aquatic and Terrestrial Ecosystems" "There's Yeast in My Bread!" "Producers" "Getting Nutrients" "The Human Digestive System" "Leaf Classification" "Plant Vascular Systems" "The Story of Maple Syrup" "The Human Circulatory System" "The Human Respiratory System" "Other Circulatory and Respiratory Systems" "Structures of the Brain" "Sensory Systems" "Animal Communication" "Monarch Migration" "North Atlantic Ocean Ecosystem"

Grade 5-ESS1

Earth's Place in The Universe

Performance Expectation 5-ESS1-1

Students who demonstrate understanding can:

Support an argument that differences in the apparent brightness of the sun compared to other stars is due to their relative distances from the Earth.

Clarification Statement: Examples include the relative distances of the stars, but not the sizes. It does not include other factors that affect apparent brightness (such as stellar masses, age, stage).

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions	The Universe and its Stars	Scale, Proportion and Quantity
Developing and using models	The sun is a star that appears larger and brighter then other stars because it is closer. Stars range greatly in their distance	Natural objects and/or observable phenomena exist from the very small to the immensely large or from very short to very
Planning and carrying out investigations	from Earth. (UE.ESS1A.a)	long time periods.
Analyzing and interpreting data		
Using mathematics and computational thinking		
Constructing explanations		
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		
Obtaining, evaluating, and communicating		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Earth and Sun Investigations Guide:
Investigation 1, Parts 1-3
Investigation 2, Parts 1-5

Earth and Sun Science Resources Book:

"Changing Shadows" "Sunrise and Sunset" "The Night Sky" "Looking through Telescopes" "Comparing the Size of Earth and the Moon" "Apollo 11 Space Mission" "How Did Earth's Moon Form?" "Changing Moon" "Lunar Cycle" "Eclipse"

"Exploring the Solar System" "Planets of the Solar System" "Why Doesn't Earth Fly Off into Space?" "Stargazing" "Star Scientists" "Our Galaxy"

Grade 5-ESS1

Earth's Place in The Universe

Performance Expectation 5-ESS1-2

Students who demonstrate understanding can:

Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.

Clarification Statement: Patterns could include the position and motion of Earth with respect to the sun and selected stars that are visible only in particular months; not including the causes of the seasons.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions	History of Planet Earth	Patterns
Developing and using models	The orbits of Earth around the sun and of the moon around Earth, together with the rotation of Earth about an axis between its	Similarities and differences in patterns can be used to sort, classify, communicate and analyze simple rates of change for natural
Planning and carrying out investigations	North and South poles, cause observable	phenomena and designed products.
Analyzing and interpreting data	patterns. These include: day and night, daily changes in the length and direction of	
Using mathematics and computational thinking		
Constructing explanations	day, month, and year. (UE.ESS1B.a)	
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Earth and Sun Investigations Guide:
Investigation 1, Parts 1-3
Investigation 2, Parts 1-5

Earth and Sun Science Resources Book:

"Changing Shadows" "Sunrise and Sunset" "The Night Sky" "Looking through Telescopes" "Comparing the Size of Earth and the Moon" "Apollo 11 Space Mission" "How Did Earth's Moon Form?" "Changing Moon" "Lunar Cycle" "Eclipse" "Exploring the Solar System" "Planets of the Solar System" "Why Doesn't Earth Fly Off into Space?" "Stargazing" "Star Scientists" "Our Galaxy"

Grade 5-ESS2

Earth's Systems

Performance Expectation 5-ESS2-1

Students who demonstrate understanding can:

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Clarification Statement: Examples could include the influence of the ocean on ecosystems, landform shape, and climate; the influence of the atmosphere on landforms and ecosystems through weather and climate; and the influence of mountain ranges on winds and clouds in the atmosphere. The geosphere, hydrosphere, atmosphere, and biosphere are each a system.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions	Earth Materials and Systems	Systems and Systems Models
	Earth's major systems are the geosphere	A system can be described in terms of its
Developing and using models	(solid and molten rock, soil, and	components and their interactions
	sediments), the hydrosphere (water and	
Planning and carrying out investigations	ice), the atmosphere (air), and the	
	biosphere (living things, including humans).	
Analyzing and interpreting data	These systems interact in multiple ways to	
	affect Earth's surface materials and	
Using mathematics and computational thinking	processes. The ocean supports a variety of	
	ecosystems and organisms, shapes	
Constructing explanations	landforms, and influences climate. Winds	
	and clouds in the atmosphere interact with	
Engaging in argument from evidence	the landforms to determine patterns of	
	weather. (UE.ESS2A.b)	
Obtaining, evaluating, and communicating		
information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Earth and Sun Investigations Guide:

Investigation 3, Parts 1-3 Investigation 4, Parts 1-4 Investigation 5, Parts 1-4

Earth and Sun Science Resources Book:

"What Is Air?" "Earth's Atmosphere" "Weather Instruments" "Uneven Heating" "Heating the Air: Radiation and Conduction" "Wind and Convection" "Wind Power" "Solar Technology" "Condensation" "Where Is Earth's Water?" "The Water Cycle" "Severe Weather" "Earth's Climates" "Global Climate Change"

Grade 5-ESS2

Earth's Systems

Performance Expectation 5-ESS2-2

Students who demonstrate understanding can:

Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.

Clarification Statement: Examples include oceans, lakes, rivers, glaciers, ground water, and polar ice caps.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions	The Role of Water in Earth's Surface	Scale, Proportion and Quantity
Developing and using models	Processes Nearly all of Earth's available water is in the ocean. Most fresh water is in glaciers or	Standard units are used to measure and describe physical quantities such as mass, time, temperature, and volume.
Planning and carrying out investigations	underground; only a tiny fraction is in	
Analyzing and interpreting data	streams, lakes, wetlands, and the atmosphere. (UE.ESS2C.a)	
Using mathematics and computational thinking	1 5	
Constructing explanations	water (water vapor) and liquid water can become a solid as ice. (UE.ESS2C.b)	
Engaging in argument from evidence		
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Earth and Sun Investigations Guide:

Investigation 4, Parts 1-4 Investigation 5, Parts 1-4

Earth and Sun Science Resources Book:

"Uneven Heating" "Heating the Air: Radiation and Conduction" "Wind and Convection" "Wind Power" "Solar Technology" "Condensation" "Where Is Earth's Water?" "The Water Cycle" "Severe Weather" "Earth's Climates" "Global Climate Change"

Grade 5-ESS3

Earth and Human Activity

Performance Expectation 5-ESS3-1

Students who demonstrate understanding can:

Generate and compare multiple solutions about ways individual communities can use science to protect the Earth's resources and environment.

Clarification Statement: Examples of solutions can include cleanup of oil spills, protecting against coastal erosion, or prevention of polluted runoff into waterways

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking questions	Human Impact on Earth Systems	System and System Models
Developing and using models	Human activities in agriculture, industry,	A system can be described in terms of its
Developing and using models	and everyday life have had major effects on the land, vegetation, streams, ocean and	components and their interactions.
Planning and carrying out investigations	the atmosphere. But individuals and	
	communities are doing things to help	
Analyzing and interpreting data	protect Earth's resources and environments. (UE.ESS3C.a)	
Using mathematics and computational thinking	, , ,	
5 . 5	Developing Possible Solutions	
Constructing explanations and designing	Tests are often designed to identify failure	
solutions	points or difficulties, which suggest the elements of the design that need to be	
Engaging in argument from evidence	improved. (ETS.UE.1B.c)	
Obtaining, evaluating, and communicating information		

FOSS® NEXT GENERATION™ REFERENCES

The following **FOSS Next Generation** elements address the performance expectations, science and engineering practices, disciplinary core ideas, and crosscutting concepts indicated below.

Earth and Sun Investigations Guide:

Investigation 4, Parts 1-4 Investigation 5, Parts 1-4

Earth and Sun Science Resources Book:

"Uneven Heating" "Heating the Air: Radiation and Conduction" "Wind and Convection" "Wind Power" "Solar Technology" "Condensation" "Where Is Earth's Water?" "The Water Cycle" "Severe Weather" "Earth's Climates" "Global Climate Change"

